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SUMMARY

A stable reduced order model (ROM) of a linear fluid–structure interaction (FSI) problem involving
linearized compressible inviscid flow over a flat linear von Kármán plate is developed. Separate stable
ROMs for each of the fluid and the structure equations are derived. Both ROMs are built using the ‘con-
tinuous’ Galerkin projection approach, in which the continuous governing equations are projected onto the
reduced basis modes in a continuous inner product. The mode shapes for the structure ROM are the eigen-
modes of the governing (linear) plate equation. The fluid ROM basis is constructed via the proper orthogonal
decomposition. For the linearized compressible Euler fluid equations, a symmetry transformation is required
to obtain a stable formulation of the Galerkin projection step in the model reduction procedure. Stability of
the Galerkin projection of the structure model in the standard L2 inner product is shown. The fluid and
structure ROMs are coupled through solid wall boundary conditions at the interface (plate) boundary. An
a priori energy linear stability analysis of the coupled fluid/structure system is performed. It is shown that,
under some physical assumptions about the flow field, the FSI ROM is linearly stable a priori if a stabiliza-
tion term is added to the fluid pressure loading on the plate. The stability of the coupled ROM is studied
in the context of a test problem of inviscid, supersonic flow past a thin, square, elastic rectangular panel
that will undergo flutter once the non-dimensional pressure parameter exceeds a certain threshold. This a
posteriori stability analysis reveals that the FSI ROM can be numerically stable even without the addition
of the aforementioned stabilization term. Moreover, the ROM constructed for this problem properly predicts
the maintenance of stability below the flutter boundary and gives a reasonable prediction for the instability
growth rate above the flutter boundary. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Despite the availability of an increasingly sophisticated collection of computational ‘high-fidelity’
finite element, finite volume, and finite difference codes for computing three-dimensional fluid
flows, complex structural system dynamics, and the coupling of the two, these tools are in practice
often too computationally expensive for use in a design or analysis setting. This situation has pushed
researchers in mathematics and engineering applications to develop model reduction techniques.
Reduced order models, or ROMs, are constructed from a high-fidelity simulation and retain the
essential physics and dynamics of the high-fidelity model, but have a much lower computational cost
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and can thus be run in real or near real-time for use in applications that require on-the-spot decision-
making, optimization, and/or control. Thus, ROMs can enable and enhance the understanding of
fluid and structural systems at a relatively low computational cost.

In recent years, various approaches for building ROMs have been proposed. Many ROM
techniques in fluid mechanics are derived from the proper orthogonal decomposition (POD)/
Galerkin projection approach [1–3]. Originally, this approach aimed to develop low-dimensional
models containing only a few degrees of freedom (DoFs) to help enhance the understanding of the
nonlinear dynamics of turbulent flows. Since then, other approaches to building fluid ROMs have
been proposed, each with its own inherent strengths. Examples include the reduced basis method
[4], balanced truncation [5,6], balanced POD [7,8], and goal-oriented ROMs [9]. Various techniques
to reduce the number of DoFs of structural models have been proposed as well. One approach of
model reduction methods for structures is to first develop a full finite element model, then use a
component mode synthesis approach to significantly reduce the number of DoFs while incorporat-
ing the essential physics of the system, including nonlinearities [10–13]. Other methods include the
use of a Galerkin approximation based on the results of a finite element analysis [14] and hierar-
chical finite element methods. In the latter approach, the order of the approximating polynomial is
increased while the mesh size is held constant, which can allow for plate meshes with as little as
one element [15, 16].

The use of ROMs in a predictive setting raises some fundamental questions regarding their numer-
ical properties, namely their consistency, stability, and convergence. In the present work, attention is
focused on the second of these properties, namely stability. It is well-known that the model reduction
method known as balanced truncation [5, 6] has a rigorous stability guarantee. However, the com-
putational cost of this method, which requires the computation and simultaneous diagonalization
of infinite controllability and observability Gramians, makes balanced truncation computationally
intractable for systems of very large dimensions. Less costly model reduction approaches such as
the balanced POD method [7, 8], and the POD method [1–3] lack, in general, an a priori stability
guarantee. That is, it is unknown a priori if a ROM constructed using these methods will preserve
the stability properties of the high fidelity system from which the model was constructed. The sta-
bility of the reduced model is commonly evaluated a posteriori: the ROM is constructed, used to
predict some dynamical behavior, and subsequently deemed a success if the solutions generated
by the ROM are numerically stable and accurately reproduce the expected behavior. There is some
risk inherent in this sort of analysis. A compressible fluid ROM might be stable for a given num-
ber of modes, but unstable for other choices of basis size, as shown in [9] for a POD model. If
the underlying ROM possesses some numerical instability inconsistent with a physical instability
exhibited by the system, for example, flutter in aeroelastic applications, it may predict the onset of
the physical instability incorrectly. It would be desirable, therefore, to construct a ROM in a way
that can ensure a priori that the discretization does not introduce any non-physical instabilities into
the approximation.

The importance of obtaining a stable ROM has been recognized in recent years by a number of
authors. The stability preserving model reduction approaches found in the literature fall into roughly
two categories: approaches which derive (a priori) a stability-preserving model reduction frame-
work that is specific to a particular equation set and approaches which stabilize an unstable ROM
through a post-processing (a posteriori) stabilization step applied to an unstable algebraic ROM
system. Both families of approaches have their inherent strengths and weaknesses. The former fam-
ily of approaches typically requires access to the governing partial differential equations (PDEs)
and can therefore be seen as intrusive (or embedded). However, these methods, by construction,
ensure that the ROM respects the physics of the governing PDEs. In contrast, the latter family of
approaches are less intrusive, as they are ‘black box’ in character, but may alter the physics inherent
in the discretized equations, thereby affecting the accuracy of the ROM.

Examples of the former ROM stabilization approach include the work of Rowley et al. [17],
Barone et al. [18, 19], and Serre et al. [20]. In [17], Rowley et al. show that Galerkin projection
preserves the stability of an equilibrium point at the origin if an ‘energy-based’ inner product is
employed. In [18, 19], Barone et al. demonstrate that a symmetry transformation leads to a sta-
ble formulation for a Galerkin ROM for the linearized, compressible Euler equations [18, 19], and
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nonlinear compressible Navier–Stokes equations [21] with solid wall and far-field boundary con-
ditions. In [20], Serre et al. propose applying the stabilizing projection developed by Barone et al.
in [18, 19] to a skew-symmetric system constructed by augmenting a given linear system with its
adjoint system. This approach yields a ROM that is stable at finite time even if the energy of the
physical model is growing. Examples of the latter ROM stabilization approach include the work
of Amsallem et al. [22] and Bond et al. [23]. In [22], a method for stabilizing projection-based
linear ROMs through the solution of a small-scale convex optimization problem is proposed. In
[23], a set of linear constraints for the left-projection matrix, given the right-projection matrix, are
derived to yield a projection framework that is guaranteed to generate a stable ROM. In both Refer-
ences [22] and [23], the authors choose to modify minimally the ROM, so that the physics are not
drastically altered.

The present work addresses the numerical stability, in the spirit of the first family of ROM
stabilization approaches described in the previous paragraph, of a linear coupled fluid–structure
interaction (FSI) ROM involving compressible inviscid fluid flow over a structure. The fluid and
structural ROMs are developed independently of each other, then combined into a single ROM using
the appropriate boundary conditions. A survey of the literature reveals that the approach of perform-
ing the model reduction separately for the individual fluid and structural subsystems is common in
the area of FSI [24–27]. This approach has several advantages: it keeps the number of parameters
required in the ROM to a minimum (e.g., the fluid ROM need not depend on structural response
parameters such as the dynamic pressure), and it allows one to take advantage of existing analy-
sis capabilities in formulating the ROM (e.g., structural eigenmodes can be obtained for ‘free’, as
they are routinely available in structural dynamics codes). Also common for FSI problems that arise
in computational fluid dynamics (CFD) applications such as flutter analysis are ROMs based on
the Arbitrary Lagrangian–Eulerian (ALE) [28] framework. In [25, 26], Lieu et al. demonstrate the
potential of POD-based reduced order modeling for near real-time aeroelastic modeling of a com-
plete F-16 fighter configuration in which the aeroelastic system is represented by a three-field ALE
formulation. The ALE method is particularly well suited for problems with moving boundaries and
large volume changes in the computational domain, but is beyond the scope of the present paper,
which focuses on a linear fluid model with linearized boundary conditions.

The remainder of this paper is organized. The fluid ROM, constructed for the three-dimensional
compressible Euler equations linearized about a steady base state using the POD/Galerkin projec-
tion approach [1–3], is described in Section 2. An energy stability analysis carried out for Galerkin
methods applied to the linearized Euler equations [18, 19] reveals that the numerical stability of
the ROM for these equations is intimately tied to the choice of inner product used to define the
Galerkin projection. The result is the construction of an inner product for the fluid equations that
guarantees certain a priori stability bounds satisfied by the ROM for any choice of basis using
Galerkin projection. Section 3 details the ROM for the structure, a panel on an aircraft or some
other moving body coupled to the adjacent supersonic compressible fluid flow; the displacement
of which is described using linearized von Kármán plate theory. The out-of-plane displacement
of the plate is expanded in a basis of eigensolutions to the governing linearized equation, and a
Galerkin method is used to develop an equation of motion in terms of the modal coefficients. This
coupling of the fluid and structure ROMs described previously through boundary condition terms
is presented in Section 4. The coupling of the ROMs gives rise to a linear dynamical system, the
numerical stability of which can be examined a priori and analytically using the energy method
and the method of Lyapunov [29, 30]. The a priori stability analysis of the FSI ROM is facilitated
by the fact that both the fluid and structure ROMs are constructed via the continuous projection
approach as follows: the continuous PDEs, rather than a discretization of these equations, are pro-
jected onto the reduced modes. With this approach, the stability properties of the continuous PDEs
carry over to the discrete Galerkin scheme. If an acoustically reflecting (or no-penetration) bound-
ary condition is imposed on the fluid variables at the plate, numerical stability can be proven for
the resulting coupled fluid/structure ROM system when a stabilization term is added to the pressure
load applied on the plate and under certain physical assumptions. The performance of the proposed
FSI ROM is evaluated numerically on a problem of inviscid, supersonic flow past a thin, square,
elastic plate that undergoes flutter once the non-dimensional dynamic pressure parameter exceeds a
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certain threshold in Section 5. For this example, it is found that the ROM solution compares well
with the theoretical result from quasi-steady aerodynamic theory (‘piston theory’ [24]), and remains
stable below the flutter boundary. Conclusions are offered in Section 6.

2. FLUID REDUCED ORDER MODEL OF LINEARIZED COMPRESSIBLE FLOW

In the previous works [18,19], ROMs based on the POD/Galerkin projection method were developed
as an alternative discretization of the linearized compressible Euler equations. The fluid ROM was
built by first calculating a reduced basis using the POD of an ensemble of flow field realizations,
and then taking the Galerkin projection of the governing (continuous) PDEs onto the basis of POD
modes using an appropriate, carefully constructed inner product. To keep this article self-contained,
the equations and model reduction approach for the fluid side of the FSI model are reviewed in
this section.

2.1. Linearized Euler equations for compressible flow

Let

qT �
�
u1, u2, u3, �, p

�
2R5, (1)

denote the vector of fluid state variables. Here, u1, u2, and u3 are, respectively, the x1, x2, and x3
components of the velocity vector uT �

�
u1, u2, u3

�
, p is the fluid pressure, and � � 1=� is

the specific volume of the fluid (� denoting the fluid density).
The governing fluid equations are taken to be the compressible Euler equations, linearized about

a steady base (or mean) state Nq. Splitting the state variable vector q into a steady mean plus a
time-varying fluctuation (q.x, t / D Nq.x/ C q0.x, t /), this linearization results in a system of the
form [31, 32]

@q0

@t
CAi

@q0

@xi
CCq0„ ƒ‚ …

�L q0

D 0, (2)

where

A1 D

0
BBBBBB@

Nu1 0 0 0 N�

0 Nu1 0 0 0

0 0 Nu1 0 0

�N� 0 0 Nu1 0

� Np 0 0 0 Nu1

1
CCCCCCA , A2 D

0
BBBBBB@

Nu2 0 0 0 0

0 Nu2 0 0 N�

0 0 Nu2 0 0

0 �N� 0 Nu2 0

0 � Np 0 0 Nu2

1
CCCCCCA , (3)

A3 D

0
BBBBBB@

Nu3 0 0 0 0

0 Nu3 0 0 0

0 0 Nu3 0 N�

0 0 �N� Nu3 0

0 0 � Np 0 Nu3

1
CCCCCCA , CD

0
BBBBBBBBB@

@ Nu1
@x1

@ Nu1
@x2

@ Nu1
@x3

@ Np
@x1

0

@ Nu2
@x1

@ Nu2
@x2

@ Nu2
@x3

@ Np
@x2

0

@ Nu3
@x1

@ Nu3
@x2

@ Nu3
@x3

@ Np
@x3

0

@ N�
@x1

@ N�
@x2

@ N�
@x3

�r � Nu 0

@ Np
@x1

@ Np
@x2

@ Np
@x3

0 �r � Nu

1
CCCCCCCCCA

. (4)

Note that the ¹Ai W i D 1, 2, 3º matrices are functions of the base flow vector Nq; the matrix C is a
function of r Nq. Note also that all the matrices (3)–(4) are independent of time, as the mean flow Nq
is assumed to be steady. In the case of uniform base flow, r Nq� 0, so that @Ai

@xj
� 0 for i , j D 1, 2, 3,

and C� 0 . The symbol � denotes the ratio of specific heats: � D cp=cv .
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It is a well-known fact that the system (2) is hyperbolic [29]. This implies that the tensor
An � A1n1 CA2n2 CA3n3, for some spatial orientation nT D .n1, n2, n3/, is diagonalizable:
An D SƒnS�1. Here, S is the matrix that diagonalizes An, and ƒn is a diagonal matrix containing
the eigenvalues of An (also referred to as the characteristic speeds):

ƒn D

0
BBB@
Nun
Nun
Nun
NunC Nc

Nun � Nc

1
CCCA , (5)

with Nc D
q
� Np N� denoting the speed of sound. Defining v0 � S�1q0, the linearized Euler equations

(2) in these so-called ‘characteristic’ variables are

@v0

@t
C S�1AiS

@v0

@xi
C S�1

�
Ai

@S
dxi
CCS

�
v0 D 0. (6)

The characteristic variables are introduced here for the sake of applying the boundary condi-
tions, which will be posed in the characteristic variables v0 rather than the primitive variables q0

(Section 4.1). Expressions for the diagonalizing matrix S and its inverse S�1 are given in Section
A.1 of the Appendix. The reader may verify that, given the diagonalizing matrix S�1 (A.1), the
characteristic variables vector is

v0 �

0
BBBBB@

v01

v02

v03

v04

v05

1
CCCCCAD

0
BBBBBBBBB@

.n3v
0 � n2w

0C n1�
0/C

N�
� Np
n1p

0

.n3u
0 � n1w

0 � n2�
0/�

N�
� Np
n2p

0

.n2u
0 � n1v

0C n3�
0/C

N�
� Np
n3p

0

u0nC
Nc
� Np
p0

�u0nC
Nc
� Np
p0

1
CCCCCCCCCA

, (7)

where u0n � u0 �n. Note that, for the specific case of a uniform base flow, the equations (6) reduce to

@v0

@t
C S�1AiS

@v0

@xi
D 0. (8)

2.2. Overview of the Proper Orthogonal Decomposition/Galerkin approach for model reduction

The fluid ROM is built via the POD/Galerkin approach, reviewed succinctly here. For a detailed
discussion of the POD/Galerkin approach applied to the Equation (2), the reader is referred
to [18, 19].

The first step of the model reduction procedure is the calculation of a reduced basis using the
POD of an ensemble of flow-field realizations. Discussed in detail in Lumley [33] and Holmes et al.
[1], POD is a mathematical procedure that, given an ensemble of data and an inner product, denoted
generically (for now) by .�, �/, constructs a basis for that ensemble that is optimal in the sense that
it describes more energy (on average) of the ensemble in the chosen inner product than any other
linear basis of the same dimension M . In the present context, the ensemble ¹uk.x/ W k D 1, : : : ,N º
is a set of N instantaneous snapshots of a CFD numerical solution field. It is a well-known result
[1, 18, 34, 35] that the solution to the POD optimization problem reduces to the eigenvalue problem
R�D ��, where R � huk˝uki is a self-adjoint and positive semidefinite operator. If it is assumed
that R is compact, then there exists a countable set of non-negative eigenvalues �i with associ-
ated eigenfunctions �i . It can be shown [1, 33] that the set of M eigenfunctions, or POD modes,
¹�i W i D 1, : : : ,M º corresponding to the M largest eigenvalues of R is precisely the desired basis.
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Given this basis, the numerical ROM solution uM can be represented as a linear combination of
POD modes

uM .x, t /D
MX
jD1

aj .t/�j .x/, (9)

where the aj .t/ are the so-called ROM coefficients, or modal amplitudes, to be solved for in
the ROM.

The second step of the model reduction procedure is the projection of the governing system of
PDEs onto the POD basis ¹�iº in the inner product .�, �/. In this step, the full system dynamics are
effectively translated to the implied dynamics of the POD modes. Suppose, for concreteness, that
the governing system of equations for the state vector u has the form

@u
@t
DL uCN2.u, u/CN3.u, u, u/, (10)

where L is a linear differential operator, and N2 and N3 are quadratic and cubic operators,
respectively. The Galerkin projection of (10) onto the POD mode �j for j D 1, 2, ...,M is

�
�j ,

@uM
@t

�
D .�j , L uM /C

�
�j , N2.uM , uM /

�
C
�
�j , N3.uM , uM , uM /

�
. (11)

Substituting the POD decomposition of uM (9) into (11) and applying the orthonormality property
of the basis functions �i in the inner product .�, �/ gives a set of time-dependent ordinary differential
equations (ODEs) for the modal amplitudes that accurately describes the flow dynamics of the full
system of PDEs for some limited set of flow conditions:

Paj �
da

dt
D
XM

lD1
al.�j , L .�l//C

XM

lD1

XM

mD1
alam.�j , N2.�l ,�m//

C
XM

lD1

XM

mD1

XM

nD1
alaman.�j , N3.�l ,�m,�n//,

(12)

for j D 1, 2, : : : ,M . The system (10) was chosen to have a cubic nonlinearity simply for the sake
of demonstrating the projection step of the model reduction on a concrete example. Attention in the
present work is restricted to linear systems, so that N2 DN3 D ; in (10)–(12).

2.3. Symmetry inner product and Galerkin projection of the governing fluid equations

In a POD/Galerkin ROM, the inner product is also a mathematical expression for the energy in the
ROM. For the incompressible Navier–Stokes equations, the natural choice of inner product is the
L2.�/ inner product, as the solution vector is taken to be the velocity vector u, so that jjujjL2.�/ is
a measure of the global kinetic energy in the domain�. The L2.�/ inner product is therefore phys-
ically sensible for the incompressible Navier–Stokes equations: the POD modes optimally represent
the kinetic energy present in the ensemble from which they are generated. The same is not true for
the compressible linearized Euler equations (2) with solution vector q0 as defined in Section 2.1.
This fact is discussed at length in [18, 36], where it is demonstrated on several test cases that the
L2.�/ inner product for these equations does not correspond to an energy integral, meaning if it is
selected as the inner product defining the projection, the ROM solution does not satisfy the energy
conservation relation implied by the governing equations.
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To define an appropriate inner product for the Galerkin projection of (2), some fundamental math-
ematical properties of this hyperbolic system are exploited. A key property of the hyperbolic system
(2) is that it is symmetrizable,‡ that is, there exists a symmetric, positive definite matrix H such that
¹HAi W i D 1, 2, 3º are all symmetric. The symmetrizer of (2) is given by [18, 19]

HD

0
BBBBB@
N� 0 0 0 0

0 N� 0 0 0

0 0 N� 0 0

0 0 0 ˛2� N�2 Np N�˛2

0 0 0 N�˛2 .1C˛2/
� Np

1
CCCCCA , (13)

where ˛ is an arbitrary real, nonzero parameter. Pre-multiplying (2) by the matrix H yields the
following symmetrized system:

@.Hq0/
@t

CHAi
@q0

@xi
CHCq0 D 0. (14)

As will be proven formally in Lemma 4.3.1, an appropriate choice of inner product for the system
(2) is the so-called ‘symmetry inner product’ defined as

.q0.1/, q0.2//.H,�/ �

Z
�

q0.1/Hq0.2/d�. (15)

Given H (13), the expression for the symmetry inner product with respect to H over � is

.q0.1/, q0.2//.H,�/ D

Z
�

�
N�u0.1/ � u0.2/C ˛2� N�2�0.1/�0.2/C

1C ˛2

� Np
p0.1/p0.2/

C˛2 N�.�0.2/p0.1/C �0.1/p0.2//

�
d�.

(16)

Equation (15) defines a valid inner product because H is symmetric positive definite. Expanded in
its modal basis, the ROM solution q0M is expressed as

q0M .x, t /D
MX
kD1

ak.t/�k.x/. (17)

The components of the five-vector �k are denoted �i
k

for i D 1, : : : , 5, that is

�T
k D

�
�1
k

, �2
k

, �3
k

, �4
k

, �5
k

�
. (18)

The Galerkin projection of the system of Equation (2) onto the j th mode, for j D 1, : : : ,M , in the
.H,�/ inner product is�

�j ,
@q0M
@t

�
.H,�/

C

�
�j , Ai

@q0M
@xi

�
.H,�/

C .�j , Cq0M /.H,�/ D 0. (19)

Equation (19) gives rise to the following set of M linear ODEs for the time-dependent ROM
coefficients ¹aj .t/ W j D 1, 2, : : : ,M º:

Paj .t/D�

MX
kD1

ak.t/

�
�j , Ai

@�k

@xi

�
.H,�/

�

MX
kD1

ak.t/.�j , C�k/.H,�/, (20)

where Paj .t/�
@aj
@t

.

‡Among other hyperbolic systems of interest that are symmetrizable are the nonlinear Euler equations [37], the com-
pressible Navier–Stokes equations [38], and the shallow water equations [39]. Most hyperbolic systems derived from
conservation laws can be symmetrized ([40, Chapter 6]). A (non-unique) symmetrizer of a matrix (or set of matrices) can
be derived using the eigenvectors of the matrix (or matrices), following techniques presented by Gustafsson in [29, 31].
Other symmetric forms of both the linearized Euler and linearized Navier–Stokes equations can be found in Oliger and
Sundstrom [32] and in Abarbanel and Gottlieb [41].
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The equations (2) and the reduced system (20) are posed on an open-bounded domain � � R3

with boundary @�. In the FSI problem considered here, @� will include the boundary of the struc-
ture or plate that lies in the fluid domain defined in (22). Discussion of the boundary conditions is
deferred until Section 4.1.

3. STRUCTURE REDUCED ORDER MODEL OF LINEARIZED VON KÁRMÁN PLATE

The von Kármán plates are a class of nonlinear plates that takes into account in-plane stretching.
With the Kirchhoff assumption [42], the equations of motion for a thin plate with a membrane
nonlinearity and thickness h take the form [43, 44]

�shw,t t CDr4w D gC
12D

h2

��
u,x C

1

2
w2,x

�
.w,xx C �w,yy/C

�
v,y C

1

2
w2,y

� �
w,yy C �w,xx

�
C.1� �/.u,y C v,x Cw,xw,y/w,xy

�
,

u,xx Cw,xw,xx C
1

2
.1� �/.u,yy Cw,xw,yy/C

1

2
.1C �/.v,xy Cw,yw,xy/D 0,

v,yy Cw,yw,yy C
1

2
.1� �/.v,xx Cw,yw,xx/C

1

2
.1C �/.u,xy Cw,xw,xy/D 0.

(21)

Here, u, v, and w denote the x1�, x2�, and x3� displacements of the plate, respectively, �s is the

linear density of the plate, D � Eh3

12.1��2/
with E denoting the elastic (Young’s) modulus, � is the

Poisson ratio, and g � g.x1, x2, t / is an applied external load per unit length. A ROM for the full
nonlinear von Kármán plate equations (21) was developed using the method of quadratic compo-
nents and a Galerkin projection in [43, 44]. In the present work, attention is restricted to the special
simplified case of the more general von Kármán equations (21), namely the linearized von Kármán
equation for the x3� displacement. This equation and the underlying assumptions are described in
the following subsection.

3.1. Linearized von Kármán plate equation

Consider a thin, elastic, rectangular plate with dimensions Lx �Ly , situated in the x3 D 0 plane of
the fluid domain � (Figure 1):

@�� ¹.x1, x2/ 2R
2 W 06 x1 6 Lx , 06 x2 6 Lyº. (22)

The plate surface is denoted with a 0@0 because the surface of the plate represents the two-
dimensional boundary of the domain� in which the fluid equations (2) are posed. x1 is the direction
of the fluid flow; x2 is the in-plane direction orthogonal to the flow. Assuming the plate undergoes
small deformations restricted to the direction normal to the plate, which leads to the out-of-plane
(or x3-direction) displacement field w.x1, x2, t /, equation (21) simplify to the linear plate equation

�shw,t t CDr4w D g. (23)

Figure 1. Geometry of the von Kármán plate problem.
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Equation (23) is also referred to as the Kirchhoff–Love plate model. The scenario considered in the
present work is illustrated in Figure 1. The fore and aft boundaries of the plate are clamped (24),
whereas the side boundaries are simply supported (25).

Mathematically, this scenario is expressed as the following boundary conditions:

w.0, x2, t /D 0D w.Lx , x2, t /,
@w

@x1
.0, x2, t /D 0D

@w

@x1
.Lx , x2, t /. (24)

w.x1, 0, t /D 0D w.x1,Ly , t /,
@2w

@x22
.x1, 0, t /D 0D

@2w

@x22
.x1,Ly , t /. (25)

The applied external load g is assumed to be free of shear components.

3.2. Galerkin model reduction of the linearized plate equation

The ROM for the linearized plate equation (23) is built using a Galerkin approximation [43, 44].
First, the out-of-plane (or x3-) displacement, w.x1, x2, t /, is expanded in a scalar-reduced basis
¹	k.x1, x2/ W k D 1, 2, : : : ,P º

wP .x1, x2, t /D
PX
iD1

bi .t/	i .x1, x2/, (26)

where P is the number of structure modes retained. The mode shapes 	i .x,y/ are taken to be the
eigenmodes of the homogeneous variant of the linearized plate equation (23). These basis functions
are orthonormal with respect to the mass matrix in the usual L2.@�/ inner product, so that

.	i , �sh	j /L2.@�/ �
Z
@�

�sh	i	jdS D

Z Lx

0

Z Ly

0

�sh	i	jdx2dx1 D ıij , (27)

where ıij denotes the Krönecker delta function. In (26), the coefficients bi .t/ are the unknown,
time-dependent DoFs to be solved for in solving the ROM. Substituting the expansion (26) into
(23), projecting the resulting system onto the kth mode 	k in the L2 inner product and invoking the
orthonormality of the 	k , the following set of equations is obtained:

Rbk.t/CD

PX
lD1

bl.t/
�
r4	l , 	k

�
L2.@�/

D .g, 	k/L2.@�/ , (28)

for k D 1, : : : ,P , where Rbk �
@2bk
@t2

.
It is well known [45] that, for any linear rectangular plate with homogeneous boundary conditions,

the functions r4	k and 	j are orthogonal in the L2.@�/ inner product, that is,�
r4	k , 	j

�
L2.@�/

D 0 for k ¤ j . (29)

Applying this identity, the following is obtained:

Rbk C!
2
kbk DGk.t/, (30)

where

!2k �D.r4	k , 	k/L2.@�/, (31)

Gk.t/� .g, 	k/L2.@�/, (32)

for k D 1, : : : ,P . Equation (30) is the structure ROM dynamical system for the structure modal
amplitudes ¹bk W k D 1, : : : ,P º, analogous to the fluid modal system (20). Physically, the !k (31)
represents the natural frequencies of the plate.
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4. NUMERICAL STABILITY OF COUPLED LINEARIZED FLUID/STRUCTURE SYSTEM

4.1. Coupling of structure and fluid reduced order models via boundary conditions

The fluid and structure ROMs are coupled through the external load g.x1, x2, t /, applied on the
plate @�, as well as through the boundary conditions on the fluid variables on @�. Because it
is assumed that the applied fluid loading on the plate is free of shear components, the external
load g.x1, x2, t / on the right-hand side of (23) consists of the static pressure only. This physical
assumption is expressed mathematically as

g.x1, x2, t /D�p0.x1, x2, 0, t / on @�, (33)

where p0.x1, x2, 0, t / is the fluid pressure on the plate @� (22). The pressure is applied downward,
and g is taken as positive when acting in the positive x3� direction.

The pressure (33) represents one side of the coupling of the fluid and structure. Additional
coupling terms arise from the boundary conditions on the fluid variables at the plate boundary.
Given the chosen (inviscid) fluid equations, the natural choice of boundary condition at the solid
wall boundary is a linearized version of the no-penetration boundary condition,§ u � nD� Pw:

u0n D�Nu � rw � Pw � u
0
p on @�. (34)

Here, w and Pw are respectively the solid wall displacement and velocity in the �n direction, with n
denoting the outward unit normal to the solid wall boundary @� and u0n � u0 � n.

In practical applications, the FSI initial boundary value problem (IBVP) is likely to be posed on
an infinite or semi-infinite domain. In this case, the boundary is decomposed as @�� @�P [@�F ,
with @�P denoting the plate boundary (22) and @�F denoting the far-field boundary [18, 19], and
an appropriate boundary condition is imposed at the far-field. An appropriate far-field boundary
condition, termed the non-reflecting boundary condition, is one that will suppress the reflection
of waves from the outer computational boundaries. All outgoing unsteady characteristic waves are
allowed to exit the flow domain at the far-field boundary without reflection, that is, without being
allowed to re-enter the domain through the boundary. This is accomplished by setting the compo-
nents of v0 corresponding to characteristic waves traveling into � (those corresponding to negative
eigenvalues of An) to zero. It is shown in [18,19] that the non-reflecting far-field boundary condition
is, by construction, well-posed and stable for the governing fluid equations. Attention may therefore
be restricted, without loss of generality, to the condition that couples the fluid and structure ROMs,
namely the condition at the plate (34).

4.2. Implementation of plate boundary conditions

The linearized no-penetration condition (34) is posed in the characteristic variables v0 (6) as an
acoustically reflecting condition. Assuming the base flow satisfies a no-penetration condition at
the plate ( Nun � 0 on @�), the characteristic speeds are ¹0, 0, 0, Nc,�Ncº. In particular, the fourth
characteristic is outgoing and the fifth characteristic is incoming. For a stationary plate, specify-
ing the acoustically reflecting boundary condition amounts to setting the incoming characteristic,
v05, equal to the outgoing characteristic, v04. From (7), the reader may observe that v04 D u0n C

Nc
� Np

and v05 D �u0n C
Nc
� Np

. Thus, when the plate velocity is u0p � u0p.x1, x2, t /, the following relation
satisfies (34)

v05 D v
0
4 � 2u

0
p on @�. (35)

§The no-penetration boundary condition is derived by requiring that the material derivative of the bounding surface
F.x,y,´, t/ D 0 vanish on the surface, that is, DF

Dt
D @F

@t
C u � rF D 0. Substituting F D w.x,y,´, t/� ´ and

uD NuC u0, and linearizing the resulting expression leads to (34). See [46] for a more detailed discussion.
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The condition (35) is equivalent to substituting

v0 v0p �

0
BBBB@

v01
v02
v03
v04

v04 � 2u
0
p

1
CCCCA on @�. (36)

The boundary condition (36) for the fluid ROM can be implemented efficiently using a weak for-
mulation. The system of PDEs (2) is projected onto the j th POD mode in the .H,�/ inner product,
as in (19). The second term in (19) is integrated by parts, and the vector specifying the boundary
condition is inserted into the boundary integral over @� that arises�

�j ,
@q0M
@t

�
.H,�/

D�

Z
@�

�T
j HAnq0p dS C

Z
�

�
@

@xi

�
�T
j HAi

	
��T

j HC
�

q0M d�. (37)

Performing an additional integration by parts on the first term in the volume integral in (37) yieldsZ
�

@

@xi

�
�T
j HAi

	
q0M d�D

Z
@�

�T
j HAnq0M dS �

Z
�

�T
j HAi

@q0M
@xi

d�, (38)

so that (37) is equivalent to�
�j ,

@q0M
@t

�
.H,�/

D�

�
�j , Ai

@q0M
@xi
CCq0M

�
.H,�/

C

Z
@�

�T
j HAn.q0M � q0p/ dS . (39)

The solid wall boundary condition is implemented by substituting the vector q0p � Sv0p , where
v0p is as in (36), into the boundary integral that appears in (39). After some careful algebraic
manipulations, it can be shown that the first integrand that appears in (37) is

�T
j HAnq0p D N� Nc�

n
j .u
0
n,M � u

0
p/„ ƒ‚ …

penalty-like term

C�nj p
0
M C �

5
ju
0
p„ ƒ‚ …

D�T
j HAnq0

M

, (40)

where �nj � �
1
jn1C�

2
jn2C�

3
jn3. The first term in (40) can be viewed as a penalty term that forces

the normal velocity to the prescribed boundary value. In a coupled ROM such as the one considered
herein, the velocity u0p is given by (34), so that

�T
j HAn.q0M � q0p/D� N� Nc�

n
j .u
0
n,M � u

0
p/D� N� Nc�

n
j

�
u0n,M C PwC Nu

@w

@x1

�
, (41)

because Nu � rw D Nu @w
@x1

on the surface of the plate. By substituting the modal decompositions (9)
and (26) into (41), (39) becomes a linear system of ODEs, namely:

Paj D�
XM

kD1
ak

"�
�j , Ai

@�k

@xi
CC�k

�
.H,�/

C

Z
@�

N� Nc�nj �
n
kdS

#

�
XP

kD1
bk

Z
@�

N� Nc Nu�nj
@	k

@x1
dS �

XP

kD1
Pbk

Z
@�

N� Nc�nj 	k dS ,

(42)

for j D 1, : : : ,M . Now, expanding the right-hand side of (33) in terms of �5.x/, the fifth component
of the fluid ROM basis, this expression becomes

g.x1, x2, t /D�
MX
iD1

ai .t/�
5
i .x1, x2, 0/, (43)

on the plate @�, so that (30) simplifies to

Rbk D�Dbk

Z
@�

r4	k	kdS �

MX
iD1

ai

Z
@�

�5i 	kdS , (44)

for k D 1, : : : ,P .
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It is straightforward to see that (42) along with (44) define an .M C 2P / � .M C 2P / linear
system of the form

�
Pf
Ps

�
D

�
A B
C D

��
f
s

�
, (45)

where

sT �
�
b1.t/, � � � , bP .t/, Pb1.t/, � � � , PbP .t/

�
2R2P , (46)

fT �
�
a1.t/, � � � , aM .t/

�
2RM , (47)

with P and M denoting the number of structure and fluid modes, respectively. Equation (45) is the
coupled fluid and structure ROM, to be solved for the structure modal amplitudes bk.t/ and fluid
modal amplitudes ak.t/. This is performed by advancing (45) forward in time using a fourth-order
implicit Runge–Kutta scheme. The entries of the submatrices that appear in (45) can be inferred
from (42) and (44), and are given in Section A.2 of the Appendix. The coupling matrices B and C
arise because of the boundary conditions on the plate @�.

4.3. Numerical stability of the coupled fluid–structure interaction reduced order model

The main result of this section is Theorem 4.3.3, which shows numerical stability of the cou-
pled fluid/structure linear system (45) if a perturbed pressure loading of the form g D �p0 C

O


u0n,M � u

0
p

�
is applied on the plate – that is, a pressure loading ‘stabilized’ by a stabilization term

of the form K


u0n,M � u

0
p

�
for some constant K 2 R. Before studying the stability of the coupled

system (45), stability of the fluid-only and structure-only systems, PfD Af and PsD Cs, respectively,
must be shown. A sufficient condition for a Galerkin scheme to be stable in some inner product
is that the energy associated with this projection in the selected inner product is non-increasing
(Section A.3 of the Appendix).

Lemma 4.3.1
Assume the base flow field satisfies a no-penetration condition on the plate ( Nun D 0) and the base
flow is uniform (r Nq D 0). Then the Galerkin projection of the linearized compressible Euler
equations (2) in the symmetry inner product .H,�/ with the linearized acoustically reflecting
boundary condition (34) is stable for the fluid ROM, with energy estimate

dEf

dt
�
1

2

d

dt
jjq0M jj

2
.H,�/ 6 0, (48)

where q0M is given by (17). That is, the discrete fluid-only ROM system PfD Af is stable.

Proof
Let the energy associated with the Galerkin projection of the fluid-only ROM PfD Af be defined by

Ef �
1

2
jjq0M jj

2
.H,�/, (49)

where q0M �
PM
kD1 ak.t/�k.x/ is the Galerkin approximation to the fluid solution. If the base

flow is assumed to be uniform, the matrix C in (2) is identically zero. Then, from (2) and upon
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substitution of the acoustically reflecting boundary condition (34) on @�:

1

2

d

dt
jjq0M jj

2
.H,�/ D

1

2

d

dt
.q0M , q0M /.H,�/

D

Z
�

q0TMH
@q0M
@t

d�

D�

Z
�

q0TMHAi
@q0M
@xi

d�

D�

Z
@�

q0TMHAnq0pdS C
1

2

Z
�

@

@xi

�
q0TMHAiq0M

�
d�

C
1

2

Z
�

q0TM
@.HAi /
@xi„ ƒ‚ …

D0 (uniform base flow)

q0Md�

D�

Z
@�

q0TMHAnq0pdS C
1

2

Z
@�

q0TMHAnq0MdS

D

Z
@�

q0TMHAn

�
1

2
q0M � q0p

�
dS .

(50)

In going from line three to line four in (50), the property that the HAi for i D 1, 2, 3 are all symmetric
has been invoked.

As discussed in Section 4.1, the acoustically reflecting boundary condition is expressed in the
characteristic variables (36). In these variables, the integrand on the right-hand side of the last line
of (50) is

q0TMHAn

�
1

2
q0M � q0p

�
D
1

2
q0TMHAnq0M � q0TMHSƒnv0p . (51)

By substituting q0p  Sv0p with v0p defined in (36) into the right-hand side of (51) and performing
some careful algebraic manipulations, the following is obtained:

q0TMHSƒnv0p D N� Ncu
0
n,M

�
u0n,M � u

0
p

	
C u0n,Mp

0
M C u

0
pp
0
M . (52)

Equation (52) employs the shorthand

u0n,M � u0M � n. (53)

Further algebraic manipulations reveal that

q0TMHAnq0M D 2p
0
Mu
0
n,M , (54)

so that

1

2
q0TMHAnq0M � q0TMHSƒnv0p D� N� Ncu

0
n,M

�
u0n,M � u

0
p

	
� u0pp

0
M

D� N� Nc.u0n,M /
2C

�
N� Ncu0n,M � p

0
M

�
u0p .

(55)

In the case that the fluid-only equations, u0p is a given constant value. Then, according to the defini-
tion of stability (Section A.3 of the Appendix), it is sufficient to consider the homogeneous version
of the boundary condition (34) (u0p D 0) to show stability of the more general inhomogeneous
boundary condition. Setting u0p D 0 in (55) and substituting (51) into the last line of (50), the
energy estimate

1

2

d

dt
jjq0M jj

2
.H,�/ D

Z
@�

� N� Nc.u0n,M /
2dS 6 0, (56)

is obtained.
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The physical implication of (56) is that the energy of the Galerkin projection of the linearized
compressible Euler equations (2) in the .H,�/ inner product with the acoustically reflecting
boundary condition (34) is non-increasing, a sufficient condition for numerical stability of the
Galerkin scheme. �

Lemma 4.3.2
The Galerkin projection of the linearized von Kármán plate equation (23) for the out-of-plane
(or x3-) displacement of the plate in the L2.@�/ inner product is stable, with energy estimate

dEp

dt
�
1

2

d

dt
jjr0P jj

2
L2.@�/

6 0, (57)

where

rP �
�
wP
PwP

�
, (58)

with wP given by (26). That is, the discrete structure-only ROM system PsD Ds is stable.

Proof
As in the proof of Lemma 4.3.1, it is sufficient to show stability for g D 0, which will imply
stability for all g ¤ 0 by Section A.3 of the Appendix. Setting the right-hand side of (23) to zero,
the following is obtained:

RwP CD.r4wP /D 0. (59)

Equation (59) can be written as the following first-order system:

PrP C
�

0 �1

Dr4 0

�
„ ƒ‚ …

�G

rP D 0. (60)

Projecting (60) onto the kth structure mode 	k in the L2.@�/ inner product gives�
Pbk
Rbk

�
C

�
0 �1

D.	k ,r4	k/L2.@�/ 0

�
„ ƒ‚ …

�Gk

�
bk
Pbk

�
D 0. (61)

Let the energy associated with the Galerkin projection of the structure-only plate ROM Ps D Ds be
defined by

Ep �
1

2
jjrP jj2L2.@�/ D

1

2

Z
@�

rTP rPdS . (62)

Then, the rate of change in energy of the structure-only system is

1

2

d

dt
jjrP jj2L2.@�/ D

1

2

d

dt

Z
@�

rTP rPdS

D
1

2

d

dt

Z
@�

²XP

kD1

XP

lD1
.	k , 	l/L2.@�/

�
bk Pbk

� � bl
Pbl

�³
dS

D
1

2

d

dt

Z
@�

²XP

kD1

XP

lD1
ıkl

�
bk Pbk

� � bl
Pbl

�³
dS

D
1

2

d

dt

Z
@�

²XP

kD1

�
bk Pbk

� � bk
Pbk

�³
dS

D

Z
@�

XP

kD1

�
bk Pbk

� � Pbk
Rbk

�
dS

D
XP

kD1

�
bk Pbk

� � 0 1

�!2
k

0

�
„ ƒ‚ …

�Gk

�
bk
Pbk

�
dS ,

(63)
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where ıkl denotes the usual Krönecker delta function, the definition !2
k
� D.	k ,r4	k/L2.@�/ has

been employed. The Lyapunov condition for stability (Section A.4 in the Appendix) is that the real
parts of the eigenvalues of the matrices ¹�Gk W k D 1, 2, : : : ,P ºmust be nonpositive. The eigenval-

ues of these matrices are ˙
q
�!2

k
D˙i

q
!2
k

, where i �
p
�1 because !2

k
> 0 for all K. Because

the eigenvalues are all pure imaginary or 0, the Lyapunov condition holds, which implies that the
last line of (63) is 6 0, as desired. It follows that the Galerkin projection of the plate equation (23)
in the L2.@�/ inner product is stable. �

Recalling the definition of the energy of the fluid and structure ROMs (49) and (62), respectively,
the total energy of the Galerkin projection of the coupled system is defined as

ET �
1

2
jjq0M jj

2
.H,�/C

1

2
jjrP jj2L2.@�/ D

�
q0TM rTP

� � 1
2

H 0
0 1

2
I2ı@�

��
q0M
rP

�
, (64)

where I2 denotes the 2� 2 identity matrix and where ı@� is an indicator function marking the plate
boundary @�:

ı@� �

²
1, for x 2 @�,
0, otherwise.

(65)

The following theorem shows that, under certain physical assumptions about the flow field and
the pressure loading, dET

dt
6 0, which implies stability for the Galerkin projection of the coupled

fluid/structure system (45).

Theorem 4.3.3
Assume the base flow field satisfies a no-penetration condition on the plate ( Nun D 0), the base flow
is uniform (r Nq D 0), and the acoustically reflecting boundary condition (34) is applied on @�.
Assume in addition that NuD 0 at the plate. If the fluid pressure loading is

g D�p0M CK
�
u0n,M � u

0
p

�
on @�, (66)

withK D� N�c, then dET
dt
6 0 (with dET

dt
defined in (68)). In other words, the Galerkin projection of

the coupled fluid/structure system (45) is stable if the fluid equations (2) are projected in the .H,�/
inner product, and the plate equation (23) is projected in the L2.@�/ inner product.

Proof
First, observe

� N� Ncu02n,M D� N� Nc
�
u0n,M � u

0
p

�2
� 2 N�cu0p

�
u0n,M � u

0
p

�
� N�cu02p , (67)

(an identity). Note also that, under the assumption that Nu D 0 at the plate, u0p � � Pw D �rTP e2,
where eT2 �

�
0 1

�
. Then, from (55) and (60), and assuming a pressure loading of the form

g D�p0M CK.u
0
n,M � u

0
p/ for some constant K 2R:

dET

dt
D
1

2

d

dt
jjq0M jj

2
.H,�/C

1

2

d

dt
jjrP jj2L2.@�/

D

Z
@�

�
� N� Ncu02n,M �

�
N� Ncu0n,M � p

0
M

�
rTP e2

	
dS C

Z
@�

rTP .�GrP � p0M e2/dS

D

Z
@�

�
� N� Nc.u0n,M � u

0
p/
2 � 2 N� Ncu0p.u

0
n,M � u

0
p/� N� Ncu

02
p �

�
N� Ncu0n,M � p

0
M

�
rTP e2

	
dS

C

Z
@�

rTP .�GrP C Œ�p0M CK.u
0
n,M � u

0
p/
e2/dS
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D

Z
@�

h
� N� Nc

�
u0n,M � u

0
p

�2
� 2 N� Ncu0p

�
u0n,M � u

0
p

�
� N� Ncu02p � N� Ncu
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If K D� N� Nc, the u0p
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terms cancel. Then
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(69)

provided the Galerkin projection of the plate structure-only system is stable, which it is by
Lemma 4.3.2. �

4.4. Physical versus numerical stability and other stability considerations

A discussion of the physical implication of the result of Theorem 4.3.3 is in order. It is well known
that transient FSI problems have one particularity: they possess a wide range of self-excited vibra-
tions and instabilities. For example, at Mach numbers for which the speed of the flow is above
the critical flutter speed [24, 47], the structural system extracts energy from the flow system, and a
small accidental disturbance in the structure can trigger an instability or oscillation. These physical
instabilities can occur even in the linear regime, such as the one considered here. The objective
of a numerical stability analysis is to determine conditions under which the numerical discretiza-
tion does not add any nonphysical instabilities into the computation. For the scenario considered in
the present work, the relevant physical instability is flutter. For supersonic flow, it is well known
that once Nu exceeds a certain threshold (the flutter speed), the system becomes linearly unstable –
that is, flutter occurs (Section 5). The fact that Nu D 0 on @� is a sufficient condition for stability
(Theorem 4.3.3) is a physically sensible one: in the case when Nu D 0, the structure cannot extract
energy from the mean flow, as occurs in flutter (an instability). The FSI system may be stable for
nonzero Nu at the plate as well; it is just not guaranteed to remain stable. Suppose the function g is
the unperturbed pressure loading (33), so that g D�p0M on @�. Then, assuming NuD 0 on the plate
as in Theorem 4.3.3, the estimate (68) is
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(70)

Equation (68) implies that if there is a ‘stability margin’ in the fluid-only and/or structure-only
systems (that is, if dEf

dt
6 0 and/or dEp

dt
6 0), the coupled system can still be stable as long asZ

@�

N� Ncu0n,Mu
0
pdS 6 �

dEf

dt
�

dEp

dt
. (71)
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For Nu ¤ 0, an aeroelastic analysis proceeds by determining the conditions under which the
eigenvalues of the system matrix (45) will have positive real part, that is, checking numerically
the Lyapunov stability condition (Section A.4 of the Appendix), as carried out in Section 5.

Another physical scenario that warrants some discussion is the case when the base flow is nonuni-
form (r Nq). In the proof of Lemma 4.3.1, it was assumed that the base flow is uniform. This condition
is a sufficient condition for the stability of the fluid ROM and yields a clean energy stability analysis.
In this case, the ROM is guaranteed to be energy stable. It is also guaranteed to be time stable, that
is, the solutions will remain bounded as t !1. The uniform base flow assumption is not a neces-
sary condition for energy stability of the fluid ROM. In the case when the base flow is nonuniform
(C ¤ 0 in the fluid system (2)), the result of Lemma 4.3.1 still holds, but the energy estimate (48)
replaced with the energy estimate

Ef .T /6 e
1
2ˇTEf .0/, (72)

where

Ef .t/�
1

2
jjq0M .�, t /jj.H,�/, (73)

denotes the fluid system energy at time t , and ˇ is an upper bound on the eigenvalues of the matrix

Q�H�T=2
@.HAi /
@xi

H�1=2 �H1=2CH�1=2 � .H1=2CH�1=2/T. (74)

A derivation of this energy estimate can be found in Section A.5 of the Appendix. The energy esti-
mate (72) establishes the semi-boundedness of the equations (2) in the .H,�/ norm, from which it
follows that the symmetry inner product .�, �/.H,�/ is an energy inner product for the linearized com-
pressible Euler equations. The practical implication of this result is that the numerical solution of a
fluid ROM constructed in the symmetry inner product will be bounded in a way that is consistent
with the behavior of the exact solutions of the governing equations (2). In the case of a nonuni-
form base flow, the fluid system (2) may support instabilities. In this case, the symmetry ROM will
be energy stable even if there are physical unbounded solutions as t ! 1; it will be time stable
provided the system has been linearized around a stable (not necessarily uniform) base state Nq.

4.5. Stability-preserving discrete implementation

The stability analysis of the preceding subsections has assumed that the integrals resulting from the
projection of the governing equations onto the reduced basis modes are evaluated exactly in contin-
uous form. At first glance, it appears there may be a problem translating this continuous result to
the discrete setting. This apparent difficulty is reminiscent of a similar problem that appears in spec-
tral methods, where spectral projections need to be computed exactly. The problem is resolved in a
similar way as in the spectral method context, namely through the use of high-precision numerical
quadrature. First, the snapshots and the POD basis modes are cast as a collection of, at the present
time, piecewise-linear (C 0) finite elements. It is then possible to construct a numerical quadrature
operator that computes exactly all continuous inner products arising from the continuous Galerkin
projection of the equations onto the POD modes. For details of this quadrature operator for the fluid
ROM and the structure ROM, the reader is referred to [18] and [43], respectively. The introduction
of C 0 finite elements requires a relaxation of the smoothness requirements on q0, H, ¹Aiº3iD1, and
w. The projection integrals are then to be interpreted in the sense of distributions. Higher order finite
element representations of the POD modes and snapshots are possible. If these are to be employed,
the order of the quadrature rule must be increased to ensure that no error is introduced into the
numerical computation of the relevant inner products.
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5. NUMERICAL EXAMPLE: SUPERSONIC FLUTTER PANEL

The performance of the proposed FSI ROM is now studied on a problem of inviscid, supersonic flow
past a thin, square, elastic rectangular Lx � Ly plate that is aligned with the flow (Figure 1). The
out-of-plane x3-direction displacement w.x1, x2, t / of the plate is governed by the linearized von
Kármán equation (23). The fore and aft edges of the plate are clamped to the surrounding flat sur-
face, and the side edges are simply supported (Figure 1). For a given flow Mach number, the panel
will undergo flutter once the non-dimensional dynamic pressure parameter �� exceeds a threshold
[24]. This parameter is defined as

�� D
3�f‡

2L3x

2D
p
M 2 � 1

, (75)

where M is the given Mach number and ‡ is mean streamwise flow speed. For the quasi-steady
aerodynamic theory, the fluid speed and fluid density are calculated from‡ D NcM and �f D

�shM
10

,
where Nc is the mean speed of sound in the fluid. The values of the system parameters employed in
generating the results presented herein are summarized in Table I. A numerical test case in which
the base flow is uniform is selected simply because it allows for a verification of the method against
a theoretical solution. Per the discussion in Section 4.4, the uniform base flow assumption is not
required for the stability of the fluid, and therefore the coupled, ROM. Numerical experiments ver-
ifying the stability properties of a fluid ROM constructed in the symmetry inner product under a
nonuniform base flow have been the subject of some recent work by Serre et al., and the reader
interested in numerical results involving the nonuniform base flow case is referred to [20].

For this problem, a fluid POD basis was obtained from a set of snapshots of a high-fidelity solution
computed using the AERO-F simulation code, run in ‘Linearized Euler’ mode with a uniform base
flow, and a free stream Mach number of 2.0. The computational fluid mesh is shown in Figure 2.
The reader may observe by examining this figure that the grid nodes are clustered around the square
panel location on the bottom surface of the mesh. The fluid POD reduced basis was computed from
the complex-valued AERO-F fluid solutions using the frequency domain POD algorithm described
in [25, 26].

Table I. System parameters for the fluid–structure interaction problem
in Section 5.

Variable Value

Plate modulus of elasticity, E 75.378 GPa
Plate thickness, h 4.66 mm
Plate length in the downstream direction, Lx 1 M
Plate length in the cross-stream direction, Ly 1 M
Plate density, �s 2770 kg=m3

Poisson’s ratio of the plate, � 0.33
Mach number, M 2
Number of plate modes, P 15

Figure 2. Computational mesh for the supersonic panel flutter problem.
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The motion of the linear von Kármán plate was described by four linear eigenmodes, computed
using the ABAQUS software package [49] for a nonlinear place. A series of solutions for the fluid
motion were obtained in the frequency domain, assuming time harmonic oscillation of each of the
plate modes over a range of discrete frequencies. The non-dimensional frequencies for the com-
putations were equally spaced from 0 to 8.0 at intervals of 0.04. The linear perturbations of the
plate eigenmodes provided forcing for the solution in the fluid domain. A particular solution for an
oscillatory plate motion is shown in Figure 3.

The coupled ROM was constructed by projecting the linearized Euler equations onto the afore-
mentioned POD basis and incorporating the boundary coupling terms using the methods described
in Section 4.2. The stabilization term derived in Theorem 4.3.3 to guarantee stability was not added
to the pressure loading for this example. The FSI system (45) was advanced forward in time using
an implicit fourth-order Runge–Kutta integration scheme. An a posteriori stability analysis was
performed by computing the eigenvalues of the resulting ROM system matrix and examining the
maximum real component of the eigenvalues, that is, by checking numerically the Lyapunov sta-
bility condition (Section A.4 of the Appendix). For all coupled ROMs, P D 15 plate modes were
employed. Figure 4 compares the results of this analysis for 32, 48, and 64 fluid mode ROMs and
for the theoretical result using quasi-steady aerodynamic theory, also called piston theory. ‘Piston
theory’ refers to early studies of fluid-plate coupling in which one assumes a quasi-steady fluid flow
model that allows for the effect of the fluid on the plate to be modeled as being dependent on the
plate’s velocity of vibration and slope in the flow’s direction [24]. With sufficient resolution, the

Figure 3. Pressure fluctuation field for harmonic oscillation of the first panel eigenmode (continuous
contours) and plate deflection (line contours).

Figure 4. Panel flutter analysis using the coupled ROM compared with predictions using aerodynamic piston
theory for the plate with properties listed in Table I; displayed are the (–) 32 mode fluid ROM, .� � �/ 48

mode fluid ROM, .� � �/ 64 mode fluid ROM, and .��/ piston theory.
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ROM properly predicts the maintenance of stability below the boundary and a reasonable prediction
for the instability growth rate above the flutter boundary. The reader may observe that the ROM
solution converged by 48 fluid modes, giving a result for the flutter dynamic pressure within 5%
of the theoretical value. The reader may also observe that the 48 mode fluid ROM agrees better
with the piston theory result plotted in Figure 4 than the 64 mode ROM for unstable conditions.
As aerodynamic piston theory is valid for M >> 1, small differences between this theory and the
solutions to the linearized Euler equations are expected at the Mach number considered. Numerical
error in the full-order CFD solution, inherited by the ROM, may also lead to discrepancies with the
theory. Further comparisons reveal that, whereas the 48 mode ROM agrees better with theory for
unstable conditions than the 64 mode ROM, the 64 mode ROM agrees better with the theory for
stable solutions.

The results for this numerical example are consistent with the discussion in Section 4.4. For small
Nu, �� is small, so linear stability of the system is to be expected, as the system does not extract
enough energy from the mean flow to go unstable. Above a certain threshold Nu (or ��), however, the
plate undergoes flutter and an instability forms. Figure 4 also suggests that the stability margin in
the ROM without the perturbed pressure loading required for stability (Theorem 4.3.3), that is, the
right-hand size of (71), is large enough for this problem for the ROM to remain numerically stable
in a way that is consistent with piston theory below the threshold �� at which flutter occurs. These
observations are further evidence that the result of Theorem 4.3.3 is a sufficient but not a necessary
condition for linear stability of the coupled fluid and structure ROM.

6. CONCLUSIONS

A ROM for an FSI problem involving linearized compressible fluid flow coupled with a linearized
von Kármán plate equation is developed. The fluid model is constructed by first calculating a
reduced basis via the POD, then taking the Galerkin projection of the governing equations onto
this basis using a stability-preserving ‘symmetry’ inner product constructed specifically for these
equations [18, 19]. The structural modes are taken to be the eigenmodes of the governing linearized
plate equation. The structure ROM is also constructed via a Galerkin projection, but in the stan-
dard L2 inner product. Both ROMs are built using the continuous Galerkin projection approach: the
Galerkin projection step is applied to the original continuous equations rather than their discretized
analogs. This approach enables an a priori stability analysis of each of the ROMs, as well as the
coupled fluid and structure ROM resulting from applying appropriate boundary conditions at the
plate boundary. Stability of the Galerkin projection of the fluid-only and structure-only equations
is proven. These results are then employed to derive sufficient conditions for linear stability of the
coupled fluid/structure system under certain physical assumptions. The conditions derived connect
naturally to the physics of the problem, for example, the existence of a ‘flutter boundary’ at which
the physical system goes unstable, and flutter is known to occur. It is shown that stability can be
maintained by adding a stabilization-like term to the fluid pressure loading imposed on the plate
equations. The coupled model is verified against results from classical piston theory on a numerical
example for which the plate will undergo flutter above a certain threshold dynamic pressure param-
eter. Stability of the FSI ROM is checked numerically a posteriori. The ROM remains stable for
values below the flutter boundary and is shown to have a reasonable prediction for the instability
growth rate above the flutter boundary.

APPENDIX A

A.1. Diagonalization of An

Let An � A1n1CA2n2CA3n3. The reader may verify that the matrices S that diagonalize An (so
that An D SƒnS�1, with ƒn given in (5)) are as follows:
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(A.1)

A.2. System matrices for coupled fluid–structure interaction reduced order model

In Section 4.3, it was shown that the linearized coupled fluid and structure ROM system has the form�
Pf
Ps

�
D

�
A B
C D

��
f
s

�
. (A.2)

Here, the entries of the matrices that appear in (A.2) are given. Begin by writing (A.2) as0
@ PaPb
Rb

1
AD

0
@ A OB1 OB2

0 0 I
OC OD 0

1
A
0
@ a

b
Pb

1
A , (A.3)

where a� f and bT �
�
b1.t/, � � � , bP .t/

�
2RP .

Then, from (42) and (44), the entries of the matrices that appear in (A.2) are as follows:
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CC�k
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Z
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N� Nc�nj�
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dS , j D 1, : : : ,M , k D 1, : : : ,P , (A.5)
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ODjk D

²
�D

R
@� r

4	j 	kdS , j , k D 1, : : : ,P , j D k,
0, otherwise,

(A.8)

and where 0 and I denote the zero and identity matrices, respectively.

A.3. Stability

Consider a general IBVP of the form

@u

@t
D PuCF , t > 0,

BuD g,

uD f , t D 0.

(A.9)

Here, P is a differential operator in space, and B is a boundary operator acting on the solution at
the spatial boundary.
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Definition 2.11 in [48]: The semi-discrete IBVP resulting from the semi-discretization of (A.9) is
stable if there is a unique solution satisfying

jju.�, t /jjh 6Ke˛t jjf .�/kjh, (A.10)

where K and ˛ are constants independent of f and g.
It is common to use energy estimates to check for stability, if

d

dt
jju.�, t /jj2h 6 0, (A.11)

then (A.10) is satisfied, and we have stability.

A.4. Lyapunov stability condition

A continuous-time linear time-invariant system Px D Ax is Lyapunov stable if and only if all the
eigenvalues of A have real parts less than or equal to 0, and those with real parts equal to 0 are
non-repeated (see, for instance, [30]).

A.5. Energy stability of the fluid reduced order model in the symmetry inner product: nonuniform
base flow case

Theorem 6.1
Assume the base flow field satisfies a no-penetration condition on the plate ( Nun D 0) and there is
a general (nonuniform) base flow Nq. Then the Galerkin projection of the linearized compressible
Euler equations (2) in the symmetry inner product .H,�/ with the linearized acoustically reflecting
boundary condition (34) is stable for the fluid ROM, with energy estimate

jjq0M .�,T /.H,�/ 6 e
1
2ˇTjjq0M .�, 0/jj.H,�/, (A.12)

where ˇ is an upper bound on the eigenvalues of the matrix

Q�H�T=2
@.HAi /
@xi

H�1=2 �H1=2CH�1=2 � .H1=2CH�1=2/T. (A.13)

and q0M is given by (17). It follows that the discrete fluid-only ROM system PfD Af is stable provided
the continuous system (2) is a stable regime.
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(A.14)
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where the matrix Q is defined in (A.13). In going from line three to line four in (A.14), the property
that the HAi for i D 1, 2, 3 are all symmetric has been invoked, as in the proof of Lemma 4.3.1.

Substituting the boundary conditions exactly as in the proof of Lemma 4.3.1 gives

1

2

d

dt
jjq0M jj

2
.H,�/ 6

1

2

Z
�

q0TMHT=2QH1=2q0TMd�, (A.15)

or

d

dt
jjq0M jj

2
.H,�/ 6 ˇjjq

0
M jj

2
.H,�/. (A.16)

Applying Gronwall’s lemma to (A.16) gives the energy estimate (A.12). �
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